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Abstract

A nonparametric estimator of density gradient, the

mean shift, is employed in the joint, spatial-range

(value) domain of gray level and color images for dis-

continuity preserving �ltering and image segmentation.

Properties of the mean shift are reviewed and its con-

vergence on lattices is proven. The proposed �ltering

method associates with each pixel in the image the clos-

est local mode in the density distribution of the joint

domain. Segmentation into a piecewise constant struc-

ture requires only one more step, fusion of the regions

associated with nearby modes. The proposed technique

has two parameters controlling the resolution in the

spatial and range domains. Since convergence is guar-

anteed, the technique does not require the intervention

of the user to stop the �ltering at the desired image

quality. Several examples, for gray and color images,

show the versatility of the method and compare fa-

vorably with results described in the literature for the

same images.

1 Introduction

Low level computer vision tasks are misleadingly dif-

�cult and often yield unreliable results, since the em-

ployed techniques rely upon the correct choice by the

user of the tuning parameter values. Today, it is an ac-

cepted fact in the vision community that the execution

of low level tasks should be task driven, i.e., supported

by independent high level information. To be able to

successfully complement this paradigm, the low-level

techniques must become more autonomous. In this pa-

per we propose such a technique for image smoothing

and for segmentation.

The mean shift estimate of the gradient of a den-

sity function and the associated iterative procedure of

mode seeking have been developed by Fukunaga and

Hostetler in [7]. Only recently, however, the nice prop-

erties of data compaction and dimensionality reduction

of the mean shift have been exploited in low level com-

puter vision tasks (e.g., color space analysis [4], face

tracking [1]).

In this paper we describe a new application based on

the theoretical results obtained in [5]. We show that

high quality edge preserving �ltering and image seg-

mentation can be obtained by applying the mean shift

in the combined spatial-range domain. The methods

we developed are conceptually very simple being based

on the same idea of iteratively shifting a �xed size win-

dow to the average of the data points within. Details

in the image are preserved due to the nonparametric

character of the analysis which does not assume a priori

any particular structure for the data.

The paper is organized as follows. Section 2 dis-

cusses the estimation of the density gradient and de-

�nes the mean shift vector. The convergence of the

mean shift procedure is proven in Section 3 for discrete

data. Section 4 de�nes the processing principle in the

joint spatial-range domain. Mean shift �ltering is ex-

plained and �ltering examples are given in Section 5.

The proposed mean shift segmentation is introduced

and analyzed in Section 6.

2 Density Gradient Estimation

Let fxigi=1:::n be an arbitrary set of n points in the

d-dimensional Euclidean space Rd. The multivariate

kernel density estimate obtained with kernel K(x) and

window radius h, computed in the point x is de�ned as

[13, p.76]

f̂(x) =
1

nhd

nX
i=1

K

�
x� xi
h

�
: (1)

The optimum kernel yielding minimum mean inte-

grated square error (MISE) is the Epanechnikov kernel

KE(x) =

�
1

2
c
�1

d (d+ 2)(1� xTx) if xTx < 1

0 otherwise

(2)

where cd is the volume of the unit d-dimensional sphere

[13, p.76].

The use of a di�erentiable kernel allows to de�ne the

estimate of the density gradient as the gradient of the

kernel density estimate (1)

r̂f(x) � rf̂(x) =
1

nhd

nX
i=1

rK

�
x� xi
h

�
: (3)

Conditions on the kernel K(x) and the window radius

h to guarantee asymptotic unbiasedness, mean-square

consistency, and uniform consistency are derived in [7].

For the Epanechnikov kernel (2) the density gradient

estimate (3) becomes

r̂f(x) =
1

n(hdcd)

d+ 2

h2

X
xi2Sh(x)

[xi � x]
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=
nx

n(hdcd)

d+ 2

h2

0
@ 1

nx

X
xi2Sh(x)

[xi � x]

1
A (4)

where the region Sh(x) is a hypersphere of radius h

having the volume hdcd, centered on x, and containing

nx data points. The last term in (4)

Mh(x) �
1

nx

X
xi2Sh(x)

[xi � x] =
1

nx

X
xi2Sh(x)

xi�x (5)

is called the sample mean shift. Using a kernel di�er-

ent from the Epanechnikov kernel results in a weighted

mean computation in (5).

The quantity nx
n(hdcd)

is the kernel density estimate

f̂(x) computed with the hypersphere Sh(x) (the uni-

form kernel), and thus we can write (4) as

r̂f(x) = f̂(x)
d+ 2

h2
Mh(x); (6)

which yields

Mh(x) =
h
2

d+ 2

r̂f(x)

f̂(x)
: (7)

The expression (7) was �rst derived in [7] and shows

that an estimate of the normalized gradient can be ob-

tained by computing the sample mean shift in a uni-

form kernel centered on x. The mean shift vector has

the direction of the gradient of the density estimate at

x when this estimate is obtained with the Epanech-

nikov kernel.

Since the mean shift vector always points towards

the direction of the maximum increase in the density,

it can de�ne a path leading to a local density maximum,

i.e., to a mode of the density (Figure 1).

The mean shift procedure, obtained by successive

� computation of the mean shift vector Mh(x)

� translation of the window Sh(x) by Mh(x),

is guaranteed to converge, as it will be shown in the

next section.

3 Convergence
Let fykgk=1;2::: denote the sequence of successive

locations of the mean shift procedure. By de�nition

we have for each k=1,2. . .

yk+1 =
1

nk

X
xi2Sh(yk)

xi; (8)

where y
1
is the center of the initial window and nk

is the number of points falling in the window Sh(yk)

centered on yk.
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Figure 1: Successive computations of the mean shift

de�ne a path leading to a local density maximum.

The convergence of the mean shift has been justi�ed

as a consequence of relation (7), (see [2]). However,

while it is true that the mean shift vector Mh(x) has

the direction of the gradient of the density estimate at

x, it is not apparent that the density estimate at loca-

tions fykgk=1;2::: is a monotonic increasing sequence.

Moving in the direction of the gradient guarantees hill

climbing only for in�nitesimal steps. The following the-

orem asserts the convergence for discrete data.

Theorem 1 Let f̂E =
n
f̂k(yk;KE)

o
k=1;2:::

be the se-

quence of density estimates obtained using Epanech-

nikov kernel and computed in the points fykgk=1;2:::
de�ned by the successive locations of the mean shift

procedure with uniform kernel. The sequence is con-

vergent.

Proof Since the data set fxigi=1:::n has �nite car-

dinality n, the sequence f̂E is bounded. Moreover, we

will show that f̂E is strictly monotonic increasing, i.e.,

if yk 6= yk+1 then f̂E(k) < f̂E(k+1), for all k = 1; 2 : : :.

Let nk, n
0

k, and n
00

k with nk = n
0

k + n
00

k be the num-

ber of data points falling in the d-dimensional windows

(Figure 2) Sh(yk), Sh
0(yk) = Sh(yk) � Sh

00(yk), and

Sh
00(yk) = Sh(yk)

T
Sh(yk+1).

Without loss of generality we can assume the origin

located at yk. Using the de�nition of the density esti-

mate (1) with the Epanechnikov kernel (2) and noting

that kyk � xik
2 = kxik

2 we have

f̂E(k) = f̂k(yk;KE)

=
1

nhd

X
xi2Sh(yk)

KE

�
yk � xi

h

�

=
d+ 2

2n(hdcd)

X
xi2Sh(yk)

�
1�
kxik

2

h2

�
: (9)

Since the kernel KE is nonnegative we also have

f̂E(k + 1) = f̂k+1(yk+1;KE) �
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Figure 2: The d-dimensional windows used in the proof

of convergence: Sh(yk), Sh
0(yk), and Sh

00(yk). The

point yk+1 is the mean of the data points falling in

Sh(yk).
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kyk+1 � xik

2
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�
: (10)

Hence, knowing that n
0

k = nk � n
00

k we obtain

f̂E(k + 1)� f̂E(k) �
d+ 2

2n(hdcd)h22
64 X
xi2Sh(yk)

kxik
2 �
X

xi2S
00

h
(y

k
)

kyk+1 � xik
2� n

0

kh
2

3
75 ; (11)

where the last term appears due to the di�erent sum-

mation boundaries.

Also, by de�nition kyk+1 � xik
2 � h

2 for all xi 2

S
0

h(yk), which implies that

X
xi2S

0

h
(y

k
)

kyk+1 � xik
2 � n

0

kh
2
: (12)

Finally, employing (12) in (11) and using (8) we ob-

tain

f̂E(k + 1)� f̂E(k) �
d+ 2

2n(hdcd)h22
4 X
xi2Sh(yk)

kxik
2 �
X

xi2Sh(yk)

kyk+1 � xik
2

3
5

=
d+ 2

2n(hdcd)h2

2
42yTk+1

X
xi2Sh(yk)

xi � nkkyk+1k
2

3
5

=
d+ 2

2n(hdcd)h2
nkkyk+1k

2
: (13)

The last item of the relation (13) is strictly positive

except when yk = yk+1 = 0.

Being bounded and strictly monotonic increasing,

the sequence f̂E is convergent. Note that if yk = yk+1

then yk is the limit of f̂E, i.e., yk is the �xed point of

the mean shift procedure.

4 Processing in Spatial-Range Domain

An image is typically represented as a 2-dimensional

lattice of r-dimensional vectors (pixels), where r is 1 in

the gray level case, 3 for color images, or r > 3 in the

multispectral case. The space of the lattice is known as

the spatial domain while the gray level, color, or spec-

tral information is represented in the range domain.

However, after a proper normalization with �s and �r ,

global parameters in the spatial and range domains,

the location and range vectors can be concatenated to

obtain a spatial-range domain of dimension d = r + 2.

The main novelty of this paper is to apply the mean

shift procedure for the data points in the joint spatial-

range domain. Each data point becomes associated to

a point of convergence which represents the local mode

of the density in the d-dimensional space. The process,

having the parameters �s and �r, takes into account si-

multaneously both the spatial and range information.

A similar idea was exploited di�erently in [16]. In Sec-

tion 5.4 we will compare the two approaches.

The output of the mean shift �lter for an image pixel

is de�ned as the range information carried by the point

of convergence. This process achieves a high qual-

ity, discontinuity preserving spatial �ltering. For the

segmentation task, the convergence points su�ciently

close in the joint domain are fused to obtain the homo-

geneous regions in the image.

The proposed spatial-range �ltering and segmenta-

tion are described in the sequel with results shown for

both gray level and color images. The perceptually

uniform L*u*v* space has been used to represent the

color information, while for the gray level cases only

the L* component has been considered.

5 Filtering

Let fxjgj=1:::n and fzjgj=1:::n be the d-dimensional

original and �ltered image points in the spatial-range

domain. The upperscripts s and r will denote the spa-

tial and range parts of the vectors, respectively. The

original data is assumed to be normalized with �s for

the spatial part and �r for the range.

Mean Shift Filtering

For each j = 1 : : : n

1. Initialize k = 1 and yk = xj .

2. Compute yk+1 =
1

nk

P
xi2S1(yk)

xi, k  k + 1

till convergence.

3. Assign zj = (xsj ;y
r
conv).
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The last assignment speci�es that the �ltered data

at the spatial location of xj will have the range compo-

nents of the point of convergence yconv. The number of

points in the window S1(yk) of radius 1 and centered

on Yk is nk. The unit radius of the window is due to

the normalization.

5.1 Arithmetic Complexity

In a practical implementation the lattice structure

of the spatial domain is used for the e�cient search of

the points xi 2 S1(yk). This search can obviously be

limited to a rectangular window of size 2 � 2 in the

normalized space, which corresponds to (2b�sc + 1)2

image pixels, where b�c is the down-rounded integer.

By denoting with kc the mean number of iterations

needed for convergence, the arithmetic complexity of

the mean shift �ltering is about kc(2b�sc + 1)2 ops

per image pixel.

5.2 Normalization Constants

The value of �s is related to the spatial resolution

of the analysis while the value of �r de�nes the range

(color) resolution.

An asymptotically optimal (in the MISE sense) gra-

dient estimate is obtained when the distribution in the

joint space is normal. The radius of the searching win-

dow is a function of the number of data points n [12,

p.152]. In our case, however, the data is far from be-

ing normal. Therefore, no theoretical constraints can

be imposed on the values of �s and �r, which are task

dependent and in practical settings their choice should

incorporate a top-down, knowledge driven component.

A challenging issue not considered in this paper is

the adaptive de�nition of the normalization constants.

To take into account the nonstationarity of the input

adaptive kernel estimation techniques were proposed

in the statistical literature [15], however for less com-

plex data. Beside exploiting a priori information (often

available for low level vision) robust image understand-

ing methods can also be helpful.

5.3 Experiments

Mean shift �ltering with (�s; �r) = (8; 4) has been

applied to the often used 256 � 256 gray level cam-

eraman image (Figure 3a), the processed image being

shown in Figure 3b. The regions containing the grass

�eld have been almost completely smoothed while de-

tails such as the tripod and the buildings in the back-

ground were preserved.

The entire processing time was a few seconds on a

standard laptop with a 233 MHz Pentium II processor.

We used a Java implementation of the algorithm. The

mean number of iterations necessary for convergence

(a)

(b)

Figure 3: Cameraman image. (a) Original. (b) Mean

shift �ltered (�s; �r) = (8; 4).

was very low, around 3, due to the relatively small

number of data points falling in the searching window.

To illustrate the e�ectiveness of the �ltering pro-

cess, the region marked in Figure 3a is represented in

three dimensions in Figure 4a. In Figure 4b the mean

shift paths associated with each pixel from the central

plateau and the line are shown. Note that the conver-

gence points (black dots) are situated in the opposite

direction relative to the edge, while the shifts on the

line remain on it. As a result, the �ltered data (Fig-

ure 4c) shows clean quasi-homogeneous regions.

A second �ltering example is given in Figure 5b.

The original, 512 � 512 color image baboon has been

processed with a mean shift �lter having (�s; �r) =

(16; 16). While the texture of the fur has been cleaned,
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(a) (b)

(c) (d)

Figure 4: A 40�20 window from the image cameraman.

(a) Original data (rotated and ipped over for better vi-

sualization). (b) Mean shift paths for the points in the

central and top (white) plateaus. (c) Filtering result

(�s; �r) = (8; 4). (d) Segmentation result (see Section 6

for details).

the details of the eyes and the whiskers remained crisp.

5.4 Comparison to Bilateral Filtering

We note here two important di�erences between the

mean shift and bilateral �ltering proposed by Tomasi

and Manduchi [16]. Both methods are based on the

same principle, the simultaneous processing of both the

spatial and range domains. However, while the bilat-

eral �ltering uses a static window in the two domains,

the mean shift window is dynamic, moving in the direc-

tion of the maximum increase in the density gradient.

Therefore, the mean shift �ltering has a more powerful

adaptation to the local structure of the data.

In addition, the �ltering iterations proposed in [16]

do not have a stopping criterion. After a su�cient

number of iterations, the processed image collapses to

a at surface. The same observation is valid for other

adaptive smoothing techniques [10, 11]. The process

de�ned by mean shift is run till convergence and main-

tains the structure of the data.

6 Segmentation

The mean shift segmentation in the spatial-range

domain has the same simple design as the �ltering pro-

cess. Again, we assume the input data to be normal-

ized with (�s; �r). Let fxjgj=1:::n be the original im-

age points, fzjgj=1:::n the points of convergence, and

(a)

(b)

Figure 5: Baboon image. (a) Original. (b) Mean shift

�ltered (�s; �r) = (16; 16).

fLjgj=1:::n a set of labels (scalars).

Mean Shift Segmentation

1. For each j = 1 : : : n run the mean shift procedure

for xj and store the convergence point in zj .

2. Identify clusters fCpgp=1:::m of convergence points

by linking together all zj which are closer than 0:5

from each other in the joint domain.

3. For each j = 1 : : : n assign Lj = fp j zj 2 Cpg.

4. Optional: Eliminate spatial regions smaller than

M pixels.

The �rst step of the segmentation is a �ltering

process. However all the information about the d-

dimensional convergence point is stored now in zj , not
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only its range part. Note also that the number of clus-

ters m is controlled by the parameters (�s; �r).

The arithmetic complexity of the segmentation is

similar to that of the mean shift �ltering, its �rst step

being the most computationally expensive.

6.1 Experiments

We employed the algorithm described above with

(�s; �r;M) = (8; 7; 20) to segment the 256� 256 gray

level image MIT (Figure 6a). The segmentation is pre-

sented in Figure 6b with the associated contours in

Figure 6c. A number of 225 homogeneous regions were

identi�ed. The high quality contours allow the delin-

eation of the walls, sky, steps, inscription on the build-

ing, etc.

Compare the segmentation in Figure 6 with the seg-

mentations of the same image through clustering [4,

Figure 4] or using Gibbs random �eld [9, Figure 7].

Returning to the cameraman image, Figure 7 shows

the reconstructed image after the regions correspond-

ing to the sky and grass were replaced with white.

Observe the preservation of the details. The mean

shift segmentation has been applied with (�s; �r;M) =

(8; 4; 10). Figure 4d shows the segmentation (with the

same parameters) of the selected rectangular window

in Figure 3a.

The segmentation with (�s; �r;M) = (16; 7; 40) of

the 512� 512 color image lake is shown in Figure 8b.

Compare this result with that of the multiscale ap-

proach in [14, Figure 11]. Finally, one can compare

the contours of the color image hand presented in Fig-

ure 9 with those from [17, Figure 15] obtained through

a complex global optimization.

6.2 Discussion

It is interesting to contrast the mean shift segmen-

tation with those based on the attraction force �eld

[14] and edge ow propagation [8]. While all the three

methods employ a vector �eld to detect regions in the

spatial domain, only the mean shift based segmenta-

tion has strong statistical foundations. Our method

associates the current pixel with a mode of the density

located in its neighborhood (measured in both spatial

and range domains).

The attraction force �eld de�ned in [14] is computed

at each pixel as a vector sum of pairwise a�nities be-

tween the current pixel and all other pixels. No theo-

retical evidence of the existence of such a force �eld is

given.

The edge ow in [8] is obtained at each location

for a given set of directions as the magnitude of the

gradient of a smoothed image. The quantization of the

edge ow direction, however, may introduce artifacts.

(a)

(b)

(c)

Figure 6: MIT image. (a) Original. (b) Segmented

(�s; �r;M) = (8; 7; 20). (c) Contours.
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Figure 7: Segmentation with (�s; �r;M) = (8; 4; 10)

and reconstruction of the cameraman image after the

elimination of regions representing sky and grass.

Recall that, by contrast, the direction of the mean shift

is dictated solely by the data.

7 Conclusions

This paper suggests that e�ective image analysis can

be implemented based on the mean shift procedure.

The nonparametric estimation of the density gradient

in the spatial-range domain is a useful tool for bottom-

up computer vision tasks such as edge preserving �lter-

ing and segmentation. The methods we proposed can

be easily extended to the processing of other low level

image features like the texture or optical ow.
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