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Abstract. The problem of tracking curves in dense visual clutter is challenging. Kalman filtering is inadequate
because it is based on Gaussian densities which, being unimodal, cannot represent simultaneous alternative hypothe-
ses. TheCondensation algorithm uses “factored sampling”, previously applied to the interpretation of static
images, in which the probability distribution of possible interpretations is represented by a randomly generated set.
Condensation uses learned dynamical models, together with visual observations, to propagate the random set
over time. The result is highly robust tracking of agile motion. Notwithstanding the use of stochastic methods, the
algorithm runs in near real-time.

1. Tracking Curves in Clutter

The purpose of this paper1 is to establish a stochas-
tic framework for tracking curves in visual clutter, us-
ing a sampling algorithm. The approach is rooted in
ideas from statistics, control theory and computer vi-
sion. The problem is to track outlines and features of
foreground objects, modelled as curves, as they move
in substantialclutter, and to do it at, or close to, video
frame-rate. This is challenging because elements in
the background clutter may mimic parts of foreground
features. In the most severe case of camouflage, the
background may consist of objects similar to the fore-
ground object, for instance, when a person is moving
past a crowd. Our approach aims to dissolve the result-
ing ambiguity by applying probabilistic models of ob-
ject shape and motion to analyse the video-stream. The
degree of generality of these models is pitched care-
fully: sufficiently specific for effective disambiguation
but sufficiently general to be broadly applicable over
entire classes of foreground objects.

1.1. Modelling Shape and Motion

Effective methods have arisen in computer vision for
modelling shape and motion. When suitable geometric

models of a moving object are available, they can be
matched effectively to image data, though usually at
considerable computational cost (Hogg, 1983; Lowe,
1991; Sullivan, 1992; Huttenlocher et al., 1993). Once
an object has been located approximately, tracking it
in subsequent images becomes more efficient computa-
tionally (Lowe, 1992), especially if motion is modelled
as well as shape (Gennery, 1992; Harris, 1992). One
important facility is the modelling of curve segments
which interact with images (Fischler and Elschlager,
1973; Yuille and Hallinan, 1992) or image sequences
(Kass et al., 1987; Dickmanns, and Graefe, 1988).
This is more general than modelling entire objects but
more clutter-resistant than applying signal-processing
to low-level corners or edges. The methods to be dis-
cussed here have been applied at this level, to segments
of parametric B-spline curves (Bartels et al., 1987)
tracking over image sequences (Menet et al., 1990;
Cipolla and Blake, 1990). The B-spline curves could,
in theory, be parameterised by their control points. In
practice, this allows too many degrees of freedom for
stable tracking and it is necessary to restrict the curve
to a low-dimensional parameterx, for example, over
an affine space (Koenderink and Van Doorn, 1991;
Ullman and Basri, 1991; Blake et al., 1993), or more
generally allowing a “shape-space” of non-rigid mo-
tion (Cootes et al., 1993).
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Finally, prior probability densities can be defined
over the curves (Cootes et al., 1993) represented
by appropriate parameter vectorsx, and also over
their motions (Terzopoulos and Metaxas, 1991; Blake
et al., 1993), and this constitutes a powerful facility
for tracking. Reasonable defaults can be chosen for
those densities. However, it is obviously more satisfac-
tory to measure or estimate them from data-sequences
(x1, x2, . . .). Algorithms to do this, assuming Gaussian
densities, are known in the control-theory literature
(Goodwin and Sin, 1984) and have been applied in
computer vision (Blake and Isard, 1994; Baumberg and
Hogg, 1995). Given the learned prior, and anobserva-
tion densitythat characterises the statistical variability
of image dataz given a curve statex, a posterior distri-
bution can, in principle, be estimated forxt givenzt at
successive timest .

1.2. Kalman Filters and Data-Association

Spatio-temporal estimation, the tracking of shape and
position over time, has been dealt with thoroughly by
Kalman filtering, in the relatively clutter-free case in
which p(xt ) can satisfactorily be modelled as Gaussian
(Dickmanns and Graefe, 1988; Harris, 1992; Gennery,
1992; Rehg and Kanade, 1994; Matthies et al., 1989)

Figure 1. Kalman filter as density propagation: in the case of Gaussian prior, process and observation densities, and assuming linear dynamics,
the propagation process of Fig. 2 reduces to a diffusing Gaussian state density, represented completely by its evolving (multivariate) mean and
variance—precisely what a Kalman filter computes.

and can be applied to curves (Terzopoulos and Szeliski,
1992; Blake et al., 1993). These solutions work rela-
tively poorly in clutter which causes the density forxt

to be multi-modal and therefore non-Gaussian. With
simple, discrete features such as points or corners com-
binatorial data-association methods can be effective
with clutter but combinatorial methods to do not ap-
ply naturally to curves. There remains a need for an
appropriately general probabilistic mechanism to han-
dle multi-modal density functions.

1.3. Temporal Propagation of Conditional Densities

The Kalman filter as a recursive linear estimator is a
special case, applying only to Gaussian densities, of
a more general probability density propagation pro-
cess. In continuous time this can be described in terms
of diffusion, governed by a “Fokker-Planck” equation
(Astrom, 1970), in which the density forxt drifts and
spreads under the action of a stochastic model of its
dynamics. In the simple Gaussian case, the diffusion
is purely linear and the density function evolves as
a Gaussian pulse that translates, spreads and is rein-
forced, remaining Gaussian throughout, as in Fig. 1, a
process that is described analytically and exactly by the
Kalman filter. The random component of the dynamical
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Figure 2. Probability density propagation: propagation is depicted here as it occurs over a discrete time-step. There are three phases: drift due
to the deterministic component of object dynamics; diffusion due to the random component; reactive reinforcement due to observations.

model leads to spreading—increasing uncertainty—
while the deterministic component causes the density
function to drift bodily. The effect of an external obser-
vationzt is to superimpose a reactive effect on the dif-
fusion in which the density tends to peak in the vicinity
of observations. In clutter, there are typically several
competing observations and these tend to encourage a
non-Gaussian state-density (Fig. 2).

TheCondensation algorithm is designed to ad-
dress this more general situation. It has the striking
property that, generality notwithstanding, it is a consid-
erably simpler algorithm than the Kalman filter. More-
over, despite its use of random sampling which is
often thought to be computationally inefficient, the
Condensation algorithm runs in near real-time.
This is because tracking over time maintains relatively
tight distributions for shape at successive time-steps,
and particularly so given the availability of accurate,
learned models of shape and motion.

2. Discrete-Time Propagation of State Density

For computational purposes, the propagation process
must be set out in terms of discrete timet . The state of
the modelled object at timet is denotedxt and its history

is Xt = {x1, . . . , xt }. Similarly, the set of image fea-
tures at timet iszt with historyZt = {z1, . . . , zt }. Note
that no functional assumptions (linearity, Gaussianity,
unimodality) are made about densities in the general
treatment, though particular choices will be made in
due course in order to demonstrate the approach.

2.1. Stochastic Dynamics

A somewhat general assumption is made for the prob-
abilistic framework that the object dynamics form a
temporal Markov chain so that

p(xt |Xt−1) = p(xt | xt−1) (1)

—the new state is conditioned directly only on the im-
mediately preceding state, independent of the earlier
history. This still allows quite general dynamics, in-
cluding stochastic difference equations of arbitrary or-
der; we use second order models and details are given
later. The dynamics are entirely determined therefore
by the form of the conditional densityp(xt | xt−1). For
instance,

p(xt | xt−1) ∝ exp

(
−1

2
(xt − xt−1 − 1)2

)
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represents a one-dimensional random walk (discrete
diffusion) whose step length is a standard normal vari-
ate, superimposed on a rightward drift at unit speed.
Of course, for realistic problems, the statex is multi-
dimensional and the density is more complex (and, in
the applications presented later, learned from training
sequences).

2.2. Measurement

Observationszt are assumed to be independent, both
mutually and with respect to the dynamical process.
This is expressed probabilistically as follows:

p(Zt−1, xt |Xt−1) = p(xt |Xt−1)

t−1∏
i =1

p(zi | xi ). (2)

Note that integrating overxt implies the mutual condi-
tional independence of observations:

p(Zt |Xt ) =
t∏

i =1

p(zi | xi ). (3)

The observation process is therefore defined by speci-
fying the conditional densityp(zt | xt ) at each timet ,
and later, in computational examples, we take this to
be a time-independent functionp(z | x). Suffice it to
say for now that, in clutter, the observation density is
multi-modal. Details will be given in Section 6.

2.3. Propagation

Given a continuous-valued Markov chain with inde-
pendent observations, the conditional state-densitypt

at timet is defined by

pt (xt ) ≡ p(xt |Zt ).

This represents all information about the state at timet
that is deducible from the entire data-stream up to that
time. The rule for propagation of state density over
time is

p(xt |Zt ) = kt p(zt | xt )p(xt |Zt−1), (4)

where

p(xt |Zt−1) =
∫

xt−1

p(xt | xt−1)p(xt−1 |Zt−1) (5)

andkt is a normalisation constant that does not depend
onxt . The validity of the rule is proved in the appendix.

The propagation rule (4) should be interpreted sim-
ply as the equivalent of the Bayes’ rule (6) for inferring
posterior state density from data, for the time-varying
case. The effective priorp(xt |Zt−1) is actually a pre-
diction taken from the posteriorp(xt−1 |Zt−1) from the
previous time-step, onto which is superimposed one
time-step from the dynamical model (Fokker-Planck
drift plus diffusion as in Fig. 2), which is expressed in
(5). Multiplication in (4) by the observation density
p(zt | xt ) in the Bayesian manner then applies the re-
active effect expected from observations. Because the
observation density is non-Gaussian, the evolving state
densityp(xt |Zt ) is also generally non-Gaussian. The
problem now is how to apply anonlinear filterto eval-
uate the state density over time, without incurring ex-
cessive computational load. Inevitably this means ap-
proximating. Numerous approaches, including “multi-
ple hypothesis tracking”, have been proposed but prove
unsuitable for use with curves as opposed to discrete
features—details are given in the appendix. In this pa-
per we propose a sampling approach which is described
in the following two sections.

3. Factored Sampling

This section describes first the factored sampling algo-
rithm dealing with non-Gaussian observations in single
images. Then factored sampling is extended in the fol-
lowing section to deal with temporal image sequences.

A standard problem in statistical pattern recognition
is to find an object parameterised asx with prior p(x),
using dataz from a single image. The posterior density
p(x | z) represents all the knowledge aboutx that is de-
ducible from the data. It can be evaluated, in principle,
by applying Bayes’ rule (Papoulis, 1990) to obtain

p(x | z) = kp(z | x)p(x) (6)

wherek is a normalisation constant that is independent
of x. In cases wherep(z | x) is sufficiently complex
thatp(x | z) cannot be evaluated simply in closed form,
iterative sampling techniques can be used (Geman and
Geman, 1984; Ripley and Sutherland, 1990; Grenander
et al., 1991; Storvik, 1994). The factored sampling
algorithm (Grenander et al., 1991) generates a random
variatex from a distributionp̃(x) that approximates the
posteriorp(x | z). First, a sample-set{s(1), . . . , s(N)} is
generated from the prior densityp(x) and then an index
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Figure 3. Factored sampling: a set of pointss(n), the centres of the blobs in the figure, is sampled randomly from a prior densityp(x). Each
sample is assigned a weightπi (depicted by blob area) in proportion to the value of the observation densityp(z | x = s(n)). The weighted
point-set then serves as a representation of the posterior densityp(x | z), suitable for sampling. The one-dimensional case illustrated here extends
naturally to the practical case that the density is defined over several position and shape variables.

n ∈ {1, . . . , N} is chosen with probabilityπn, where

πn = pz
(
s(n)
)

∑N
j =1 pz

(
s( j )
)

and

pz(x) = p(z | x),

the conditional observation density. The valuex′ = xn

chosen in this fashion has a distribution which approx-
imates the posteriorp(x | z) increasingly accurately as
N increases (Fig. 3).

Note that posterior mean propertiesE [g(x) | z] can
be generated directly from the samples{s(n)}by weight-
ing with pz(x) to give:

E [g(x) | z] ≈
∑N

n=1 g
(
s(n)
)
pz
(
s(n)
)

∑N
n=1 pz

(
s(n)
) . (7)

For example, the mean can be estimated usingg(x) = x
(illustrated in Fig. 4) and the variance usingg(x) =
xxT . In the case thatp(x) is a spatial Gauss-Markov
process, Gibbs sampling fromp(x) has been used
to generate the random variates{s(1), . . . , s(N)}. Oth-
erwise, for low-dimensional parameterisations as in
this paper, standard, direct methods can be used for
Gaussians2 (Press et al., 1988). Note that, in the case
that the densityp(z | x) is normal, the mean obtained
by factored sampling is consistent with an estimate ob-
tained more conventionally, and efficiently, from linear
least squares estimation. For multi-modal distributions
which cannot be approximated as normal, so that linear

estimators are unusable, estimates of meanx by fac-
tored sampling continue to apply.

4. The CONDENSATION Algorithm

TheCondensation algorithm is based on factored
sampling but extended to apply iteratively to successive
images in a sequence. The same sampling strategy
has been developed elsewhere (Gordon, et al., 1993;
Kitagawa, 1996), presented as developments of Monte-
Carlo methods. Jump-diffusion tracking (Miller et al.,
1995) may also be related to the approach described
here.

Given that the process at each time-step is a self-
contained iteration of factored sampling, the out-
put of an iteration will be a weighted, time-stamped
sample-set, denoted{s(n)t , n = 1, . . . , N} with weights
π
(n)
t , representing approximately the conditional state-

density p(xt |Zt ) at time t . How is this sample-set
obtained? Clearly, the process must begin with a prior
density and the effective prior for time-stept should
be p(xt |Zt−1). This prior is of course multi-modal in
general and no functional representation of it is avail-
able. It is derived from the sample set representation
{(s(n)t−1, π

(n)
t−1), n = 1, . . . , N} of p(xt−1 |Zt−1), the

output from the previous time-step, to which predic-
tion (5) must then be applied.

The iterative process as applied to sample-sets, de-
picted in Fig. 5, mirrors the continuous diffusion pro-
cess in Fig. 2. At the top of the diagram, the out-
put from time-stept − 1 is the weighted sample-set
{(s(n)t−1, π

(n)
t−1), n = 1, . . . , N}. The aim is to maintain,

at successive time-steps, sample sets of fixed sizeN,
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Figure 4. Sample-set representation of shape distributions: the sample-set representation of probability distributions, illustrated in one dimen-
sion in Fig. 3, is illustrated here (a) as it applies to the distribution of a multi-dimensional curve parameterx. Each samples(n) is shown as a
curve (of varying position and shape) with a thickness proportional to the weightπn. The weighted mean of the sample set (b) serves as an
estimator of the distribution mean.

Figure 5. One time-step in theCondensation algorithm: Each of the three steps—drift-diffuse-measure—of the probabilistic propagation
process of Fig. 2 is represented by steps in theCondensation algorithm.
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so that the algorithm can be guaranteed to run within
a given computational resource. The first operation
therefore is to sample (with replacement)N times from
the set{s(n)t−1}, choosing a given element with probabil-
ity π(n)t−1. Some elements, especially those with high
weights, may be chosen several times, leading to iden-
tical copies of elements in the new set. Others with
relatively low weights may not be chosen at all.

Each element chosen from the new set is now sub-
jected to the predictive steps. First, an element un-
dergoes drift and, since this is deterministic, identical
elements in the new set undergo the same drift. This
is apparent in the Fig. 5. The second predictive step,
diffusion, is random and identical elements now split
because each undergoes its own independent Brownian
motion step. At this stage, the sample set{s(n)t } for the
new time-step has been generated but, as yet, without its
weights; it is approximately a fair random sample from
the effective prior densityp(xt |Zt−1) for time-stept .
Finally, the observation step from factored sampling is
applied, generating weights from the observation den-
sity p(zt | xt ) to obtain the sample-set representation
{(s(n)t , π

(n)
t )} of state-density for timet .

Figure 6 gives a synopsis of the algorithm. Note the
use ofcumulativeweightsc( j )

t−1 (constructed in step 3)
to achieve efficient sampling in step 1. After any time-
step, it is possible to “report” on the current state, for
example, by evaluating some moment of the state den-
sity as shown.

One of the striking properties of theCondensa-
tion algorithm is its simplicity, compared with the
Kalman filter, despite its generality. Largely, this is
due to the absence of the Riccati equation which ap-
pears in the Kalman filter for the propagation of co-
variance. The Riccati equation is relatively complex
computationally but is not required in theConden-
sation algorithm which instead deals with variability
by sampling, involving the repeated computation of a
relatively simple propagation formula.

5. Stochastic Dynamical Models
for Curve Motion

In order to apply theCondensation algorithm,
which is general, to tracking curves in image-streams,
specific probability densities must be established both
for the dynamics of the object and for the observation
process. In the examples described here,x is a linear
parameterisation of the curve and allowed transforma-
tions of the curve are represented by linear transfor-

mations ofx. TheCondensation algorithm itself
does not demand necessarily alinear parameterisation
though linearity is an attraction for another reason—the
availability of algorithms to learn object dynamics. The
algorithm could also be used, in principle, with non-
linear parameterised kinematics—for instance, repre-
senting an articulated hand in terms of joint angles
(Rehg and Kanade, 1994).

5.1. Linear Parameterisations of Splines
for Tracking

We represent the state of a tracked object following
methods established for tracking using a Kalman filter
(Blake et al., 1995). Objects are modelled as a curve
(or set of curves), typically though not necessarily the
occluding contour, and represented at timet by a pa-
rameterised image curver(s, t). The parameterisation
is in terms of B-splines, so

r(s, t) = (B(s) · Qx(t), B(s) · Qy(t)),

for 0 ≤ s ≤ L , (8)

where B(s) is a vector (B1(s), . . . , BNB(s))
T of

B-spline basis functions,Qx andQy are vectors of B-
spline control point coordinates andL is the number
of spans. It is usually desirable (Blake et al., 1993) to
restrict the configuration of the spline to a shape-space
of vectorsX defined by(

Qx

Qy

)
= WX +

(
Q̄x

Q̄y

)
, (9)

where the matrixW is a matrix of rankNX considerably
lower than the 2NB degrees of freedom of the uncon-
strained spline. Typically the shape-space may allow
affine deformations of the template shapeQ̄, or more
generally a space of rigid and non-rigid deformations.
The space is constructed by applying an appropriate
combination of three methods to build aW-matrix:

1. determining analytically combinations of contours
derived from one or more views (Ullman and Basri,
1991; Koenderink and Van Doorn, 1991; Blake
et al., 1993), a method that is usable both for affine
spaces and for certain classes of articulated object;

2. capturing sequences of key frames of the object in
different poses (Blake et al., 1995);

3. performing principal components analysis on a set
of outlines of the deforming object (Cootes et al.,



12 Isard and Blake

Figure 6. TheCondensation algorithm.

1993; Baumberg and Hogg, 1994) to derive a small
set of representative contours.

5.2. Dynamical Model

Exploiting earlier work on dynamical modelling (Blake
et al., 1993, 1995), object dynamics are modelled as a
second order process, conveniently represented in dis-
crete timet as a second order linear difference equation:

xt − x̄ = A(xt−1 − x̄)+ Bwt (10)

wherewt are independent vectors of independent stan-
dard normal variables, the state-vector

xt =
(

Xt−1

Xt

)
, (11)

and wherēx is the mean value of the state andA, B are
matrices representing the deterministic and stochastic
components of the dynamical model, respectively. The
system is a set of damped oscillators, whose modes,
natural frequencies and damping constants are deter-
mined byA, driven by random accelerations coupled
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into the dynamics viaB from the noise termBw. While
it is possible to set sensible defaults forA, x̄ and B,
it is more satisfactory and effective to estimate them
from input data taken while the object performs typical
motions. Methods for doing this via Maximum Like-
lihood Estimation are essential to the work described
here and are described fully elsewhere (Blake et al.,
1995; Reynard et al., 1996).

The dynamical model can be re-expressed in such a
way as to make quite clear that it is a temporal Markov
chain:

p(xt | xt−1)

∝ exp

(
−1

2
‖B−1((xt − x̄)− A(xt−1 − x̄))‖2

)
(12)

where‖ · · · ‖ is the Euclidean norm. It is therefore clear
that the learned dynamical models are appropriate for
use in theCondensation algorithm.

5.3. Initial Conditions

Initial conditions for tracking can be determined by
specifying the prior densityp(x0), and if this is
Gaussian, direct sampling can be used to initialise the
Condensation algorithm. Alternatively, it is pos-
sible simply to allow the densityp(xt ) to settle to a
steady statep(x∞), in the absence of object measure-
ments. Provided the learned dynamics are stable (free
of undamped oscillations) a unique steady state exists.
Furthermore, ifp(x0) is Gaussian,p(x∞) is Gaussian
with parameters that can be computed by iterating the
Riccati equation (Gelb, 1974). At this point the density
function represents an envelope of possible configura-
tions of the object, as learned during the training phase.
(Background clutter, if present, will modify and bias
this envelope to some extent.) Then, as soon as the
foreground object arrives and is measured, the density
p(xt ) begins to evolve appropriately.

6. Observation Model

The observation process defined byp(zt | xt ) is as-
sumed here to be stationary in time (though the
Condensation algorithm does not necessarily de-
mand this) so a static functionp(z | x) needs to be
specified. As yet we have no capability to estimate
it from data, though that would be ideal, so some
reasonable assumptions must be made. First, a mea-
surement model for one-dimensional data with clutter

is suggested. Then an extension is proposed for two-
dimensional observations that is also used later in com-
putational experiments.

6.1. One-Dimensional Observations in Clutter

In one dimension, observations reduce to a set of
scalar positions{z = (z1, z2, . . . , zM)} and the ob-
servation density has the formp(z | x) where x is
one-dimensional position. The multiplicity of measure-
ments reflects the presence of clutter so either one of
the events

φm = {true measurement iszm}, m = 1, . . . ,M

occurs, or else the target object is not visible with prob-
ability q = 1 − ∑

m P(φm). Such reasoning about
clutter and false alarms is commonly used in target
tracking (Bar-Shalom and Fortmann, 1988). Now the
observation density can be expressed as

p(z | x) = qp(z | clutter)+
M∑

m=1

p(z | x, φm)P(φm).

A reasonable functional form for this can be obtained
by making some specific assumptions: that3 P(φm) =
p,∀m, that the clutter is a Poisson process along the line
with spatial densityλ and that any true target measure-
ment is unbiased and normally distributed with stan-
dard deviationσ . This leads to

p(z | x) ∝ 1 + 1√
2πσα

∑
m

exp

(
− ν2

m

2σ 2

)
(13)

whereα = qλ andνm = zm − x, and is illustrated
in Fig. 7. Peaks in the density function correspond to
measured features and the state density will tend to be
reinforced in theCondensation algorithm at such
points. The background level reflects the possibility
that the true target has not been detected at all. The
effect on tracking behaviour is to provide for the possi-
bility of “tunneling”: a good hypothesis should survive
a transitory failure of observations due, for example,
to occlusion of the tracked object. The parametersσ

(units of distance) andα (units of inverse distance)
must be chosen, though, in principle, they could be
estimated from data by observing measurement error
σ and both the density of clutterλ and probability of
non-detectionq.

Considerable economy can be applied, in practice, in
the evaluation of the observation density. Given a hy-
pothesised positionx in the “observation” step (Fig. 6)
it is not necessary to attend to all featuresz1, . . . , zM .
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Figure 7. One-dimensional observation model: a probabilistic observation model allowing for clutter and the possibility of missing the target
altogether is specified here as a conditional densityp(z | x).

Any νm for which

1√
2πσα

exp

(
− ν2

m

2σ 2

)
¿ 1

can be neglected and this sets a search window around
the positionx outside which measurements can be ig-
nored. For practical values of the constants the search
window will have a width of a fewσ . In practice, the
clutter is sufficiently sparse andσ is sufficiently small
that the search window rarely contains more than one
feature.

Note that the densityp(z | x) represents the informa-
tion aboutx given a fixed numberM of measurements.
Potentially, theeventψM that there areM measure-
ments, regardless of the actualvaluesof those measure-
ments, also constitutes information aboutx. However,
we can reasonably assume here that

P(ψM | x) = P(ψM),

for instance becausex is assumed to lie always within
the image window. In that case, by Bayes’ theorem,

p(x |ψM) = p(x)

—the eventψM provides no additional informa-
tion about the positionx. (If x is allowed also to fall
outside the image window then the eventψM is infor-
mative: a value ofM well above the mean value for
the background clutter enhances the probability thatx
lies within the window.)

6.2. Two-Dimensional Observations

In a two-dimensional image, the set of observationsz
is, in principle, the entire set of features visible in the
image. However, an important aspect of earlier sys-
tems in achieving real-time performance (Lowe, 1992;
Harris, 1992; Blake et al., 1993) has been the restriction
of measurement to a sparse set of lines normal to the
tracked curve. These two apparently conflicting ideas
can be resolved as follows.

The observation densityp(z | x) in two dimensions
describes the distribution of a (linearly) parameterised
image curvez(s), given a hypothetical shape in the
form of a curver(s), 0 ≤ s ≤ 1, represented by a
shape parameterx. The two-dimensional density be
derived as an extension of the one-dimensional case. It
is assumed that a mappingg(s) is known that associates
each pointz(s) on the image curve with a pointr(g(s))
on the shape. In practice, this mapping is set up by
tracing normals from the curver . Note thatg(s) is not
necessarily injective becausez(s) includes clutter as
well as foreground features. Next, the one-dimensional
density (13) is approximated in a more amenable form
that neglects the possibility of more than one feature
lying inside the search interval:

p(z | x) ∝ exp

(
− 1

2σ 2
f (ν1;µ)

)

where f (ν;µ) = min(ν2, µ2), (14)
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Figure 8. Observation process: the thick line is a hypothesised shape, represented as a parametric spline curve. The spines are curve normals
along which high-contrast features (white crosses) are sought.

µ = √
2σ log(1/

√
2πασ) is a spatial scale constant,

andν1 is theνm with smallest magnitude, representing
the feature lying closest to the hypothesised positionx.
A natural extension to two dimensions is then

p(z | x)= Zexp

(
− 1

2r

∫ L

0
f (z1(s)− r(s);µ) ds

)

(15)

in whichr is a variance constant andz1(s) is the closest
associated feature tor(s):

z1(s) = z(s′) wheres′ = arg min
s′∈g−1(s)

|r(s)− z(s′)|.

Note that the constant of proportionality (“partition
function”) Z(x) is an unknown function. We make the
assumption that the variation ofZ with x is slow com-
pared with the other term in (15) so thatZ can be treated
as constant. It remains to establish whether this as-
sumption is justified.

The observation density (15) can be computed via a
discrete approximation, the simplest being:

p(z | x) ∝ exp

(
−

M∑
m=1

1

2r M
f (z1(sm)− r(sm);µ)

)
,

(16)

where sm = m/M . This is simply the product of
one-dimensional densities (14) withσ = √

r M , eval-
uated independently alongM curve normals as in
Fig. 8.

7. Applying the CONDENSATION Algorithm
to Video-Streams

Four examples are shown here of the practical efficacy
of the Condensation algorithm. Movie (MPEG)
versions of some results are available on the web at
http://www.robots.ox.ac.uk/ ~ab/ .
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Figure 9. Tracking three people in a cluttered room: the first frame of a sequence in which one figure moves from right to left in front of two
stationary figures.

7.1. Tracking a Multi-Modal Distribution

The ability of theCondensation algorithm to rep-
resent multi-modal distributions was tested using a 70
frame (2.8 s) sequence of a cluttered room containing
three people each facing the camera (Fig. 9). One of
the people moves from right to left, in front of the other
two. The shape-space for tracking is built from a hand-
drawn template of head and shoulders (Fig. 8) which
is then allowed to deform via planar affine transforma-
tions. A Kalman filter contour-tracker (Blake et al.,
1993) with default motion parameters is able to track
a single moving person just well enough to obtain a
sequence of outline curves that is usable as training
data. Given the high level of clutter, adequate perfor-
mance with the Kalman filter is obtained here by means
of background modelling (Rowe and Blake, 1996), a
statistical form of background subtraction, which ef-
fectively removes clutter from the image data before it
is tracked. It transpires, for this particular training set,
that the learned motions comprise primarily horizontal
translation, with vertical translation and horizontal and
vertical shear present to a lesser degree.

The learned shape and motion model can now
be installed asp(xt | xt−1) in the Condensation
algorithm which is run on a test sequence butwith-
out the benefit of background modelling, so that the

background clutter is now visible to the tracker.
Figure 10 shows how the state-density evolves as track-
ing progresses. Initialisation is performed simply by
iterating the stochastic model, in the absence of mea-
surements, to its steady state and it can be seen that this
corresponds, at time 0, to a roughly Gaussian distribu-
tion, as expected. The distribution rapidly collapses
down to three peaks which are then maintained appro-
priately even during temporary occlusion. Although the
tracker was designed to track just one person, theCon-
densation algorithm allows the tracking of all three,
for free; the ability to represent multi-modal distribu-
tions effectively provides multiple hypothesis capabil-
ity. Tracking is based on frame rate (40 ms) sampling
in this experiment and distributions are plotted in the
figure for alternate frames. The experiment was run
using a distribution ofN = 1000 samples per time-
step.

7.2. Tracking Rapid Motions Through Clutter

The ability to track more agile motion, still against
clutter, was tested using a 500 field (10 s) sequence
of a girl dancing vigorously to a Scottish reel. The
shape-space for tracking was planar affine, based on a
hand-drawn template curve for the head outline. The
training sequence consisted of dancing against a largely
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Figure 10. Tracking with multi-modal state-density: an approximate depiction of the state-density is shown, computed by smoothing the
distribution of point massess(1)t , s(2)t , . . . in theCondensation algorithm. The density is, of course, multi-dimensional; its projection onto the
horizontal translation axis is shown here. The initial distribution is roughly Gaussian but this rapidly evolves to acquire peaks corresponding to
each of the three people in the scene. The right-most peak drifts leftwards, following the moving person, coalescing with and separating from
the other two peaks as it moves. Having specified a tracker for one person we effectively have, for free, a multi-person tracker, owing to the
innate ability of theCondensation algorithm to maintain multiple hypotheses.

uncluttered background, tracked by a Kalman filter
contour-tracker with default dynamics to record 140
fields (2.8 s) of tracked head positions, the most that
could be tracked before losing lock. Those 140 fields
were sufficient to learn a bootstrap motion model which
then allowed the Kalman filter to track the training data
for 800 fields (16 s) before loss of lock. The motion
model obtained from these 800 fields was used in exper-
iments with theCondensation tracker and applied
to the test data, now including clutter.

Figure 11 shows some stills from the test sequence,
with a trail of preceding head positions to indicate mo-
tion. The motion is primarily translation, with some
horizontal shear apparent as the dancer turns her head.
Representing the state density withN = 100 samples
at each time-step proves just sufficient for successful
tracking. As in the previous example, a prior density
can be computed as the steady state of the motion model
and, in this case, that yields a prior for position that
spreads across most of the image area, as might be

expected given the range of the dance. Such a broad
distribution cannot effectively be represented by just
N = 100 samples. One alternative is to increaseN in
the early stages of tracking, and this is done in a later
experiment. Alternatively, the prior can be based on
a narrower distribution whose centre is positioned by
hand over the object at time 0, and that is what was done
here. Observation parameters wereµ = 24, σ = 7
with M = 18 normals.

Figure 12 shows the motion of the centroid of the
estimated head position as tracked both by theCon-
densation algorithm and by a Kalman filter using
the same motion model. TheCondensation tracker
correctly estimated head position throughout the se-
quence, but after about 40 fields (0.80 s), the Kalman
filter was distracted by clutter, never to recover.

Given that there is only one moving person in this
experiment, unlike the previous one in which there
were three, it might seem that a unimodal repre-
sentation of the state density should suffice. This is
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Figure 11. Tracking agile motion in clutter: the test sequence consists of 500 fields (10 s) of agile dance against a cluttered background. The
dancer’s head is tracked through the sequence. Several representative fields are shown here, each with a trail of successive mean tracked head
position at intervals of 40 ms. TheCondensation algorithm usedN = 100 sample per time-step to obtain these results.

emphatically not the case. The facility to represent
multiple modes is crucial to robustness as Fig. 13 illus-
trates. The figure shows how the distribution becomes
misaligned (at 900 ms), reacting to the distracting form
of the computer screen. After a further 20 ms the distri-
bution splits into two distinct peaks, one correspond-
ing to clutter (the screen) and the other to the dancer’s
head. At this point the clutter peak actually has the
higher posterior probability—a unimodal tracker, for
instance, a Kalman filter, would almost certainly dis-
card the lower peak, rendering it unable to recover.
TheCondensation algorithm however, capable as it
is of carrying several hypotheses simultaneously, does
recover rapidly as the clutter peak decays for lack of
confirmatory observation, leaving just one peak corre-
sponding to the dancer at 960 ms.

7.3. Tracking an Articulated Object

The preceding sequences show motion taking place in
affine shape-spaces of just six dimensions. High di-
mensionality is one of the factors, in addition to agility
and clutter, that makes tracking hard (Blake et al.,
1993). In order to investigate tracking performance
in higher dimensions, we used a 500 field (10 s) test
sequence of a hand translating, rotating, and flexing
its fingers independently, over a highly cluttered desk
scene (Fig. 14). Figure 15 shows just how severe the
clutter problem is—the hand is immersed in a dense
field of edges.

A model of shape and motion model was learned
from training sequences of hand motion against a plain
background, tracked by Kalman filter (using signed
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Figure 12. The Condensation tracker succeeds where a Kalman filter fails: the estimated centroid for the sequence shown in Fig. 11 is plotted
against time for the entire 500 field sequence, as tracked first by theCondensation tracker, then by a comparable Kalman filter tracker.
TheCondensation algorithm correctly estimates the head position throughout the sequence. The Kalman filter tracks briefly, but is soon
distracted by clutter and never recovers.

edges to help to disambiguate finger boundaries). The
procedure comprised several stages, creative assembly
of methods from the available “toolkit” for learning
(Blake et al., 1995).

1. Shape-spacewas constructed from six templates
drawn around the hand with the palm in a fixed
orientation and with the fingers and thumb in var-
ious configurations. The six templates combined
linearly to form a five-dimensional space of defor-
mations which were then added to the space of trans-
lations to form a seven-dimensional shape-space.

2. Default dynamics in the shape-space above were
adequate to track a clutter-free training sequence of
600 frames in which the palm of the hand main-
tained an approximately fixed attitude.

3. Principal components analysis: the sequence of
600 hand outlines was replicated with each hand
contour rotated through 90◦ and the sequences con-
catenated to give a sequence of 1200 deformations.
Projecting out the translational component of mo-
tion, the application of Principal Component Anal-
ysis (PCA) to the sequence of residual deformations
of the 1200 contours established a 10-dimensional
space that accounted almost entirely for deforma-
tion. This was then combined with the translational
space to form a 12-dimensional shape-space that

accounted both for the flexing of fingers and thumb
and also for rotations of the palm.

4. Bootstrapping: a Kalman filter with default dy-
namics in the 12-dimensional shape-space was suf-
ficient to track a training sequence of 800 fields of
the hand translating, rotating, and flexing fingers
and thumb slowly. This was used to learn a model of
motion.

5. Relearning: that motion model was installed in a
Kalman filter used to track another, faster training-
sequence of 800 fields. This allowed a model for
more agile motion to be learned, which was then
used in experiments with theCondensation
tracker.

Figure 16 shows detail of a series of images from a
tracked, 500 field test-sequence. The initial state den-
sity was simply the steady state of the motion model,
obtained by allowing the filter to iterate in the absence
of observations. Tracker initialisation was facilitated
by using more samples per time-step (N = 1500) at
time t = 0, falling gradually to 500 over the first
4 fields. The rest of the sequence was tracked using
N = 500. As with the previous example of the dancer,
clutter can distract the tracker but the ability to repre-
sent multi-modal state density means that tracking can
recover.
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Figure 13. Recovering from tracking failure: detail from four consecutive fields of the sequence illustrated in Fig. 11. Each sample from the
distribution is plotted on the image, with intensity scaled to indicate its posterior probability. (Most of theN = 100 samples have too low a
probability to be visible in this display.) In field 45, the distribution is misaligned, and has begun to diverge. In fields 46 and 47 it has split into
two distinct peaks, the larger attracted to background clutter, but converges back onto the dancer in field 48.

7.4. Tracking a Camouflaged Object

Finally, we tested the ability of the algorithm to track
rapid motion against background distraction in the
extreme case that background objects actually mim-
iced the tracked object. A 12 s (600 field) sequence

showed a bush blowing in the wind, the task being
to track one particular leaf. A template was drawn
by hand around a still of one chosen leaf and allowed
to undergo affine deformations during tracking. Given
that a clutter-free training sequence was not available,
the motion model was again learned by means of a
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Figure 14. A hand moving over a cluttered desk: Field 0 of a 500 field (10 s) sequence in which the hand translates, rotates, and the fingers
and thumb flex independently.

Figure 15. Severe clutter: detail of one field (Fig. 14) from the test-sequence shows the high level of potential ambiguity. Output from a
directional Gaussian edge detector shows that there are many clutter edges present as potential distractors.

bootstrap procedure. A tracker with default dynamics
proved capable of tracking the first 150 fields of a train-
ing sequence before losing the leaf, and those tracked
positions allowed a first approximation to the model
to be learned. Installing that in aCondensation
tracker, the entire sequence could be tracked, though
with occasional misalignments. Finally, a third learned

model was sufficient to track accurately the entire 12-
second training sequence. Despite occasional violent
gusts of wind and temporary obscuration by another
leaf, theCondensation algorithm successfully fol-
lowed the object, as Fig. 17 shows. In fact, tracking
is accurate enough usingN = 1200 samples to sepa-
rate the foreground leaf from the background reliably,
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Figure 16. Tracking a flexing hand across a cluttered desk: representative stills from a 500 field (10 s) sequence show a hand moving over a
highly cluttered desk scene. The fingers and thumb flex independently, and the hand translates and rotates. Here theCondensation algorithm
usesN = 1500 samples per time-step initially, dropping gradually over 4 fields toN = 500 for the tracking of the remainder of the sequence.
The mean configuration of the contour is displayed.

Figure 17. Tracking with camouflage: the aim is to track a single camouflaged moving leaf in this 12-s sequence of a bush blowing in the wind.
Despite the heavy clutter of distractors which actually mimic the foreground object, and occasional violent gusts of wind, the chosen foreground
leaf is successfully tracked throughout the sequence. Representative stills depict mean contour configurations, with preceding tracked leaf
positions plotted at 40 ms intervals to indicate motion.
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an effect which can otherwise only be achieved using
“blue-screening”. Having obtained the model itera-
tively as above, independent test sequences could be
tracked without further training. WithN = 1200 sam-
ples per time-step the tracker runs at 6.5 Hz on a SGI
Indy SC4400 200 MHz workstation. Reducing this to
N = 200 increases processing speed to video frame-
rate (25 Hz), at the cost of occasional misalignments
in the mean configuration of the contour. Observation
parameters wereµ = 8, σ = 3 with M = 21 normals.

8. Conclusions

Tracking in clutter is hard because of the essential
multi-modality of the conditional observation den-
sity p(z | x). In the case of curves multiple-hypothesis
tracking is inapplicable and a new approach is needed.
TheCondensation algorithm is a fusion of the sta-
tistical factored sampling algorithm for static, non-
Gaussian problems with a stochastic model for object
motion. The result is an algorithm for tracking rigid
and non-rigid motion which has been demonstrated to
be far more effective in clutter than comparable Kalman
filters. Performance of theCondensation algorithm
improves as the sample size parameterN increases;
formally computational complexity isO(N log N), al-
though this can be madeO(N) with a minor modifi-
cation to the sampling procedure. Impressive results
have been demonstrated for models with between 6
and 12 degrees of freedom, even whenN is as low
as 100–200. Performance in several cases was im-
proved still further with an increased valueN ≈ 1000.
In a six-dimensional shape-space, the system currently
runs withN = 100 in real-time (50 Hz) on a desk-top
graphics workstation (SGI Indy R4400SC, 200 MHz).

The new approach raises a number of questions.
First, alternative observation models could be explored
in order to make greater use of image intensity varia-
tions, though without sacrificing too much in the way
of photometric invariance. It is to be hoped in the in-
terests of efficiency that, as happens with the search
window in the edge-based case, computational atten-
tion could be concentrated in a band around the hy-
pothesised curve without significant loss of accuracy
in the model. Such a model would have echoes of cor-
relation matching but of course without the exhaustive
search characteristic of correlation matchers which is
quite infeasible in more than two or three dimensions.

Secondly, the availability of general state densities
suggests the need for more general representations of

those densities. When the density is approximately
unimodal, first and second moments may be adequate
to convey the likely states, but in the multi-modal case,
as for example when several people are tracked simul-
taneously, the mean configuration is not a particularly
useful statistic—it meaninglessly combines the config-
urations of the three people. An alternative is to attempt
to develop a mode finder capable of pin-pointing sev-
eral modes when present. More generally, there is a
need for “operators” to interrogate densities: for in-
stance, an operator to find a person moving to the
right, or to find the tallest person. Perhaps such op-
erators could be formulated as hypothesis tests applied
to sample sets.

A third question concerns the random sampling
scheme and its efficiency. Factored sampling can be
inefficient as the modes ofp(z | x) become narrow.
One approach is “importance sampling” (Ripley, 1987)
in which a heuristically chosen distribution, approxi-
mating p(z | x), is used to concentrate random sam-
pling around modes. However, this has the drawback
that the prior p(x) must be repeatedly evaluated
whereas, in temporal propagation, the prior (predic-
tion) p(xt | zt−1) cannot be evaluated pointwise, only
sampled.

Finally, it is striking that the density propagation
equation (4) in theCondensation algorithm is a
continuous form of the propagation rule of the “for-
ward algorithm” for Hidden Markov Models (HMMs)
(Rabiner and Bing-Hwang, 1993). The integral over
continuous states in (5) becomes a summation over
discrete states in the HMM, withp(xt | xt−1) repre-
sented by a transition matrix. This suggests a natu-
ral opportunity to combine the two so that mixed dis-
crete/continuous states could be propagated over time.
This would allow switching between multiple mod-
els, for instance, walk-trot-canter-gallop, each model
represented by a stochastic differential equation, with
transitions governed by a discrete conditional proba-
bility matrix. It seems likely that such a system could
be executed as aCondensation tracker. A further
challenge is to develop a learning algorithm for mixed
dynamical models.

Appendix A: Non-Linear Filtering

There are four distinct probability distributions rep-
resented in a non-linear Bayesian filter. Three of
them form part of the problem specification and the
fourth constitutes the solution. The three specified
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distributions are:

1. the prior densityp(x) for the statex
2. the process densityp(xt | xt−1) that describes the

stochastic dynamics
3. the observation densityp(z | x)

and the filter evolves over time to generate, as the so-
lution at each time-step, the state-densitypt (x) where
pt (xt ) ≡ p(xt |Zt ). Only when all of the three spec-
ified distributions are Gaussian is the state-densitypt

also Gaussian. Otherwise, for non-Gaussianpt , it is
possible to use one of a number of approximate filters,
depending on which of the specified densities it is that
is non-Gaussian.

A.1. Non-Gaussian Prior Density

The case that the prior density is non-Gaussian is the
simplest to deal with provided only that it can ade-
quately be represented (or approximated) as an additive
Gaussian mixture:

p0(x) =
M∑

m=1

w(m)G
(
x;µ(m), P(m)

0

)
.

In that case, provided that other specified densities are
Gaussian, the state density can also be represented as
a corresponding mixture

pt (x) =
M∑

m=1

w(m)G
(
x;µ(m)t , P(m)

t

)

in which the meansµ(m)t and variancesP(m)
t vary over

time but the weightsw(m) are fixed. Each of theM mix-
ture components evolves as an independent Gaussian
so that, in fact, the state density is just a sum of densities
from M independent linear Kalman filters.

A.2. Non-Gaussian Process Density

Non-Gaussian state densities can arise from the nature
of the process either because the dynamics are driven
by non-Gaussian process noise, or, more generally, be-
cause the deterministic dynamics are non-linear. One
approach to filtering is then to approximate the dynam-
ics by Taylor expansion as a linear process with time-
varying coefficients and proceed as for linear Kalman
filters. This generates a Gaussian representation of the

evolving state-density which may be a good approx-
imation depending on the nature of the non-linearity.
This is the basis of the “Extended Kalman Filter” (EKF)
(Gelb, 1974; Bar-Shalom and Fortmann, 1988). Al-
ternatively, one can attempt a mixture representation,
as earlier, but now allowing the weightsw(m) also to
vary over time. Unfortunately, even allowing dynamic
re-weighting (Sorenson and Alspach, 1971) does not
produce exact solutions forpt (x), because the indi-
vidual Gaussian components do not remain Gaussian
over time. For example, consider the case in which the
process densityp(xt | xt−1) is itself an additive mix-
ture ofk > 1 Gaussian components. According to the
Bayesian propagation equation (5) each component of
pt splits intok separate components in the transition
from timen to timen + 1; the total number of compo-
nents inpt grows exponentially askt . Clearly,pt must
be approximated at each time-step to prune back the
number of components (Anderson and Moore, 1979)
within some resource-limited boundM . Effectively,
there areMk full Kalman filters running at each time-
step, each bringing the computational expense of its
own Riccati equation step. Clearly, the success of this
approach depends on how well the densitiespt and
p(xt | xt−1) can be approximated with a modest num-
ber Mk of components.

A.3. Non-Gaussian Observation Density

In the case of visual tracking in clutter, non-linearity
of the tracking filter arises, as we have seen, because
the observation densityp(z | x) is non-Gaussian and,
furthermore, is multi-modal so that it cannot be well
approximated by a single Gaussian. Each of the meth-
ods just mentioned for handling non-Gaussian process
density, the EKF and Gaussian mixtures, are relevant
also to non-Gaussian observation density but continue
to have the same drawbacks. Note that, in the case of
Gaussian mixtures, the number of mixture components
again proliferates at each time-step of (4), albeit via a
different mechanism involving products of Gaussians
rather than convolutions. Even this assumes that the
observation density can be approximated as a mixture
but in clutter this becomes rather inefficient, requiring
at least one component per visible feature.

There is an additional class of techniques which ap-
plies to this case when the non-Gaussian state den-
sity arises from clutter of a particular sort. In the
simplest case, one of a finite set of measurements
zt = {zt,1, . . . , zt,k} at timen is to be associated with



Condensation—Conditional Density Propagation for Visual Tracking 25

the statext at timet . Heuristic mechanisms such as the
validation gate and the probabilistic data-association
filter (PDAF) (Bar-Shalom and Fortmann, 1988) at-
tempt to deal with the ambiguity of association. Al-
ternatively it can, in principle, be dealt with exactly by
“multiple hypothesis filtering” but with computational
cost that grows exponentially over time and which
is therefore ruled out in practice. The “RANSAC”
algorithm (Fischler and Bolles, 1981) deals proba-
bilistically with multiple observations but the obser-
vations have to be discrete, and there is no mecha-
nism for temporal propagation. More complex methods
including the Joint PDAF (JPDAF) (Bar-Shalom and
Fortmann, 1988; Rao, 1992) address the more dif-
ficult problem of associating not simply single fea-
tures but subsequences ofZt with the state. However,
these methods rely on the existence of discrete fea-
tures. In contour tracking the features are continuous
curves and so are not naturally amenable to discrete
association.

A.4. Direct Integration

Finally, one very general approach to non-linear filter-
ing must be mentioned. This is simply to integrate (5)
directly, using a suitable numerical representation of
the state density such as finite elements. This in essence
is what (Bucy, 1969) proposed and more recently
(Hager, 1990) investigated with respect to robotics ap-
plications. It is usable in one or two dimensions but,
complexity being exponential in the dimension, is al-
together infeasible for problems of dimension around
6–20, typical of the tracking problems dealt with here.
TheCondensation algorithm is designed to offer a
viable alternative.

Appendix B: Derivation of the Sampling Rule

The correctness of the sampling rule (4) in Section 2.3
is proved by first deriving two lemmas from the inde-
pendence assumption (2). (This is similar to the deriva-
tion found in (Bar-Shalom and Fortmann, 1988), ex-
cept that our independence assumptions are explicitly
specified.)

Lemma 1.

p(zt |Xt ,Zt−1) = p(zt | xt ).

Proof:

p(Zt |Xt ) = p(zt ,Zt−1 |Xt )

= p(zt |Zt−1,Xt )p(Zt−1 |Xt )

= p(zt |Zt−1,Xt )

t−1∏
i =1

p(zi | xi ).

(Taking (3) at timet and integrating w.r.t.zt yields the
reduction of the second term in line 2.) Now, using (3)
again gives the result.

Lemma 2.

p(xt |Xt−1,Zt−1) = p(xt | xt−1).

Proof:

p(xt ,Zt−1 |Xt−1) = p(xt |Xt−1)p(Zt−1 |Xt−1)

from (2) so

p(xt |Zt−1,Xt−1) = p(xt |Xt−1) = p(xt | xt−1),

using the Markov assumption (1).
For derivation of the propagation formula consider

p(Xt |Zt ) = p(zt |Xt ,Zt−1)p(Xt |Zt−1)

p(zt |Zt−1)

= kt p(zt |Xt ,Zt−1)p(Xt |Zt−1)

= kt p(zt | xt )p(Xt |Zt−1)

(using Lemma 1).

Now integrating w.r.t.Xt−1 gives

p(xt |Zt ) = kt p(zt | xt )p(xt |Zt−1).

The last term can be expanded:

p(xt |Zt−1)=
∫
Xt−1

p(xt |Xt−1,Zt−1)p(Xt−1 |Zt−1)

=
∫

xt−1

∫
Xt−2

p(xt | xt−1)p(Xt−1 |Zt−1)

(using Lemma 2)

=
∫

xt−1

p(xt | xt−1)p(xt−1 |Zt−1)

which is the required result.
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Appendix C: Asymptotic Correctness
of the CONDENSATION Algorithm

TheCondensation algorithm is validated here by a
probabilistic argument showing that the sample-set rep-
resentation of conditional density is correct, asymptot-
ically, as the sizeN of the sample set at each time-step
gets large. The argument is based on the one by Grenan-
der et al. (1991) to justify their factored sampling al-
gorithm for interpretation of static images. They use
the standard probabilistic tool of “weak convergence”
(Rao, 1973) and the “weak law of large numbers” to
show that a posterior distribution inferred by factored
sampling can be made arbitrarily accurate by choosing
N sufficiently large. No formal indication is given as
to how largeN should be for a given level of accu-
racy, something which is determined, in practice, by
experimentation.

In the proof that follows, the correctness proof for
factored sampling of a static image is made inductive
so that it can be applied to successive images in a se-
quence. This would be sufficient to apply several inde-
pendent images to the estimation of a static underlying
object. A further generalisation takes account of the
predictive step (step 2 of theCondensation algo-
rithm) that deals with the dynamics of an object in
motion.

C.1. Factored Sampling

The asymptotic correctness of the factored sampling
algorithm (Section 3) is expressed in a theorem of
Grenander et al. (1991):

Theorem 3 (Factored sampling). If αp0 pz is an
(absolutely continuous) density function(with α a
suitable normalisation constant) then for any given
valuex

p̃(x) → αp0(x)pz(x), weakly, asN → ∞

—weak convergence of the density function to the re-
quired posterior.

(Recall p̃ is the density function of the random vari-
ate x generated by factored sampling, as defined in
Section 3.) The proof of the theorem was given by
Grenander et al.

C.2. Dynamic Extension of Factored Sampling

The first step in the extension for dynamic problems is
to state a corollary of the theorem above that generalises
it slightly to the case where the prior is not known
exactly but has itself been simulated approximately.

Corollary 4 (Weak factored sampling). The se-
quences1, . . . , sN is now generated by sampling from
a density ps chosen such that

ps(x) → p0(x), weakly, asN → ∞,

where convergence is uniform with respect tox. Pro-
vided pz is bounded, the random variatex′ generated
from thesn as before has a density functionp̃ for which

p̃(x) → αp0(x)pz(x), weakly, asN → ∞

and convergence is uniform with respect tox.

The proof of this corollary is straightforward.

C.3. Propagation of Approximated State Density

First note that the sampless(n)t generated by the al-
gorithm can themselves be regarded as random vari-
ables. Using the corollary it is possible to estab-
lish that asymptotically the probability density of any
givens(n)t converges to the desired probability density
p(xt |Zt−1). From now on the limit symbol→ is used
to denote weak, uniform convergence of density func-
tions asN → ∞. The correctness result is expressed
in the theorem below. We first require a normalisation
assumption for the process density, that∫

p(xt | xt−1) dxt−1 is bounded.4 (17)

Theorem 5 (Weak propagation). Each sample
s(n)t , n = 1, . . . , N at time t is drawn from a distri-
bution with densityp̃t such that

p̃t (xt ) → p(xt |Zt−1).

Proof: The proof is inductive. Suppose the result
holds for p̃t−1; then after step 1 of the algorithm in
Fig. 6, by the corollary, and observing that the sampling
probabilities are

π
(n)
t−1 ∝ p

(
zt−1 | xt−1 = s(n)t−1

)
,
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eachs′(n)
t−1 has a densityp′

t−1 such that

p′
t−1 → αt−1 p(xt−1 |Zt−2)p(zt−1 | xt−1)

whereαt−1 is a normalisation constant so that

p′
t−1 → p(xt−1 |Zt−1).

In step 2 of the algorithm the random dynamical step
is applied tos′(n)

t to gives(n)t with densityp′′ such that

p′′(xt ) =
∫

p
(
xt | xt−1 = s′(n)

t

)
p
(
s′(n)

t

)
ds′(n)

t

=
∫

p(xt | xt−1)p
′(xt−1) dxt−1

→
∫

p(xt | xt−1)p(xt−1 |Zt−1) dxt−1

(making use of(17))

= p(xt |Zt−1)

and this is the required density function fors(n)t , estab-
lishing the inductive step as required.

Finally, the ground instance is straightforward. Ini-
tial sampless′(n)

1 are drawn in step 1 from the priorp0

so that, after step 2 of the algorithm, thes(n)1 are sam-
pled predictions for timet = 1 from a densityp̃1 such
that

p̃1(x1) = p(x1) ≡ p(x1 |Z0).

(Z0 is an empty set) so certainly

p̃1(x1) → p(x1 |Z0)

as required.
Note that convergence has not been proved to be

uniform in t . For a given fixedt , there is convergence
asN → ∞ but nothing is said about the limitt → ∞.
In practice, this could mean that at later timest larger
values ofN may be required, though that could depend
also on other factors such as the nature of the dynamical
model.
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Notes

1. This paper has appeared in short form (Isard and Blake, 1996) as
joint winner of the prize of the European Conference on Computer
Vision, 1996.

2. Note: The presence of clutter causesp(z | x) to be non-Gaussian,
but the priorp(x)may still happily be Gaussian, and that is what
will be assumed in our experiments.

3. There could be some benefit in allowing theP(φm) to vary with
m to reflect varying degrees of feature-affinity, based on contrast,
colour or orientation.

4. This assumption is not restrictive in practice but is a little inelegant
and perhaps there is a way to do without it.
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